HTST and UHT in the Food Industry
It seems somehow concerning to use a process that has evolved for food products, such as milk and juices, and use it for highly refined pharmaceuticals, but let's consider the fundamentals. The chemical-reaction kinetics that describe how and why these processes inactivate bacteria but retain the quality in a biological fluid (e.g., milk) are the same as in any other biological fluid. Commercially, these processes are well established and used for products ranging from juices to baby food and even products as sensitive as liquid whole egg. These processes have annual capacities measured in hundreds of billions of packages per year. Commercial equipment for HTST and UHT processes commonly operate at flow rates ranging from roughly 5 gallons to more than 100 gallons per minute. Commercial capacities, however, do not lend themselves to the batch sizes and rapid cycles of research and development. The need to conduct thorough research and to optimize treatments (e.g., hold time, temperature, and heat transfer) for different products has triggered the development of miniaturized research equipment and experimental methods for this purpose. These tools have enabled R&D professionals to address potential manufacturing issues early and avoid losses and costly problems while also helping these processes to become better understood. Optimization of these processes has led to development of a wide assortment of time and temperature treatments as well as highly refined tools to test products and deliver these treatments. As a consequence, small-capacity systems have been developed for lower flow rates, bringing the benefits of HTST pasteurization and UHT sterilization to the high-value, low-volume materials of pharmaceuticals. Sterliization Continuous Manufacturing
Continuous manufacturing has been described as a manufacturing breakthrough and as the method of the future by Konstatine Konstantinov, vice-president of commercial process development at Genzyme (now part of Sanofi), and Robert Bradway, chairman and CEO of Amgen (1, 2). The trend toward using this method is increasing as manufacturers of bio/pharmaceuticals strive to meet growing demand, reduce floor space, improve manufacturing flexibility and capacity, and reduce costs.
The adoption of continuous manufacturing for biopharmaceuticals emphasizes the need to inactivate microorganisms continuously at rates consistent with these new processes. The adoption of HTST and UHT continuous processing and surrounding technologies is a natural fit. Early adopters in the biotechnology and biopharmaceutical industries have begun to deploy these processes. The question remains, however, what are the reasons to adopt HTST and UHT in these industries? Are their benefits simply a function of the continuous process or are there additional benefits that make HTST and UHT even more desirable?
The benefits of HTST and UHT processes result from their continuous flow nature and their use of different and more highly refined time and temperature conditions. To understand their benefits, it is useful to consider an example process like that shown in Figure 1. The product is pumped continuously through the process at constant flow and is heated to the process temperature under steady-state conditions. It flows through the hold tube, which is of sufficient length to ensure that the product is hot for the time needed for the required lethality, before it is cooled as it exits the system. The result is that the product experiences a controlled, well-defined time–temperature exposure. This time–temperature history (TTH), conceptually shown in Figure 2, is usually less than two minutes from start to finish. Although there are relatively few rules linking the terms "pasteurization" or "sterilization" to specific temperatures, for the sake of this discussion, pasteurization is usually conducted at hold-tube temperatures between 70 °C and 121 °C. Sterilization hold temperatures range from 128 °C to 150 °C. Hold times most commonly range from 2 to 30 seconds.
Unlike scale-up of batch operations, scale-up of HTST and UHT processes is often unnecessary because processing more material is linked only to the processing time, not the vessel size. Larger volumes of product are processed by simply running the equipment longer. Thus, multiple systems may not be needed for different batch sizes. When scale-up is necessary within the same general style of HTST or UHT equipment, it is a matter of duplicating the TTH. If a different style system is used, the detailed matching of the TTH may require more powerful mathematical and modeling tools for thermal process evaluation.
In the food industry, these processes are used to make many high quality products that would not be viable using longer-time and lower-temperature methods, such as autoclaving, because of poor quality. These examples demonstrate the potential to pasteurize or sterilize many bio/pharmaceutical materials that are also not well-suited to autoclaving. In simpler terms, these are enabling technologies.
Sterliization Continuous Manufacturing
Continuous manufacturing has been described as a manufacturing breakthrough and as the method of the future by Konstatine Konstantinov, vice-president of commercial process development at Genzyme (now part of Sanofi), and Robert Bradway, chairman and CEO of Amgen (1, 2). The trend toward using this method is increasing as manufacturers of bio/pharmaceuticals strive to meet growing demand, reduce floor space, improve manufacturing flexibility and capacity, and reduce costs.
The adoption of continuous manufacturing for biopharmaceuticals emphasizes the need to inactivate microorganisms continuously at rates consistent with these new processes. The adoption of HTST and UHT continuous processing and surrounding technologies is a natural fit. Early adopters in the biotechnology and biopharmaceutical industries have begun to deploy these processes. The question remains, however, what are the reasons to adopt HTST and UHT in these industries? Are their benefits simply a function of the continuous process or are there additional benefits that make HTST and UHT even more desirable?
The benefits of HTST and UHT processes result from their continuous flow nature and their use of different and more highly refined time and temperature conditions. To understand their benefits, it is useful to consider an example process like that shown in Figure 1. The product is pumped continuously through the process at constant flow and is heated to the process temperature under steady-state conditions. It flows through the hold tube, which is of sufficient length to ensure that the product is hot for the time needed for the required lethality, before it is cooled as it exits the system. The result is that the product experiences a controlled, well-defined time–temperature exposure. This time–temperature history (TTH), conceptually shown in Figure 2, is usually less than two minutes from start to finish. Although there are relatively few rules linking the terms "pasteurization" or "sterilization" to specific temperatures, for the sake of this discussion, pasteurization is usually conducted at hold-tube temperatures between 70 °C and 121 °C. Sterilization hold temperatures range from 128 °C to 150 °C. Hold times most commonly range from 2 to 30 seconds.
Unlike scale-up of batch operations, scale-up of HTST and UHT processes is often unnecessary because processing more material is linked only to the processing time, not the vessel size. Larger volumes of product are processed by simply running the equipment longer. Thus, multiple systems may not be needed for different batch sizes. When scale-up is necessary within the same general style of HTST or UHT equipment, it is a matter of duplicating the TTH. If a different style system is used, the detailed matching of the TTH may require more powerful mathematical and modeling tools for thermal process evaluation.
In the food industry, these processes are used to make many high quality products that would not be viable using longer-time and lower-temperature methods, such as autoclaving, because of poor quality. These examples demonstrate the potential to pasteurize or sterilize many bio/pharmaceutical materials that are also not well-suited to autoclaving. In simpler terms, these are enabling technologies.
The Learning Curve in Bio/Pharmaceuticals
The technologies of HTST pasteurization and UHT sterilization have been refined for many years in other industries. Details of validation, maintenance of proper safety assurance, and documentation have also been well defined. The tools to generate thermal-destruction kinetics, test products, and optimize operating conditions simplify the adoption of these technologies for bio/pharmaceutical manufacture.
These technologies have been developing for many years, and their adoption involves the use of the existing tools to optimize them for each application. It also requires specific efforts to implement them properly. As continuous-flow processes that are new to a manufacturing environment, they require training and a different outlook to support this transition. It is a cultural change, which extends from manufacturing through maintenance, quality assurance, engineering, and management.
Experience in other industries has shown that thorough initial testing of products is important. Screening to determine the suitability of materials and selecting processing conditions are significant initial steps. Test-processing products thoroughly is essential to obtain data supporting optimization of these conditions. It is equally essential that testing demonstrates the performance of the product with down-line unit operations, especially in continuous manufacturing.
Industry participants are finding that HTST pasteurization and UHT sterilization provide another tool for the manufacture of bio/pharmaceuticals. They have found products for which theses processes are strikingly successful and those for which they are not suitable. More importantly, perhaps the most interesting benefit is the ability to facilitate the development of entirely new products. John Miles, PhD, is president of MicroThermics Inc., 3216-B Wellington Ct., Raleigh NC 27615, tel. 919.878.3777, jmiles@microthermics.com
REFERENCES
1. K. Weintraub, "Biotech Firms Race For Manufacturing Breakthrough," MIT Technology Review Business Report, Jan. 30, 2013, http://www.technologyreview.com/news/509336/biotech-firms-in-race-for-manufacturing-breakthrough/.
2. A. Jungbauer, Biotechnol. J. 6 (12), 1431–1434 (2011).